Clinical Enzymology

Isoenzymes or isozymes

Are multiple forms of the same enzyme that catalyze the same chemical reaction

Different chemical and physical properties

Amino acid sequence

Kinetic properties

Property	E.g.
Electrophoretic mobility	Isoenzymes of lactate dehydrogenase have different electrophoretic mobility
Heat stability	alkaline phosphatase Isoenzymes are either heat labile or heat stable.
Inhibitor	An inhibitor can inhibit only one Isoenzymes of an enzyme e.g. Acid phosphatase
Co- factors	Mitochondrial isocitrate dehydrogenase require NAD+, cytosolic form require NADP+
Tissue localization	LDH \ is present in heart LDH \circ present in liver
Antibodies	For creatine kinase, each Isoenzymes bound only by a specific antibody

Alkaline Phosphatase (ALP)

EC 4, 1, 1

Alternative names

Alkaline phosphomonoesterase.

Glycerophosphatase.

Phosphomonoesterase

Reaction catalyzed:

is a hydrolase enzyme responsible for removing phosphate groups from many types of molecules, including nucleotides, proteins, and alkaloids.

The process of removing the phosphate group is called dephosphorylation

A phosphate monoester+ H₇O

ALP

an alcohol + phosphate

Co – factors: Mg; Zn

Physiology:

In humans, alkaline phosphatase is present in all tissues throughout the entire body, but is particularly concentrated in liver, bile duct, kidney, bone, and the placenta.

Diagnostic use:

levels are significantly higher in children and pregnant women.

alkaline phosphatase isozymes:

Alpha \ ALP

epithelial cells of biliary canaliculi

Alpha Y ALP

hepatic cells

Labile heat

Placenta

Stable heat

Pre beta ALP

bone

Gamma ALP

intestinal cells

Leukocyte alkaline phosphatase

WBCs

alkaline phosphatase isozymes:

ALP I

intestinal

ALP L

tissue-nonspecific (liver / bone / kidney)

ALP P

placental (Regan isozyme)

Clinical significance

Abnormally high blood levels of ALP may indicate two groups of conditions:

Hepatobiliary disease

bile duct obstruction

Bone disease

associated with increased osteoblastic activity: Paget's disease (a chronic disorder that typically results in enlarged and deformed bones), rickets

Clinical significance

Abnormally low blood levels of ALP may indicate

Hypophosphatasia

Postmenopausal women

magnesium deficiency

severe anemia

Hypothyroidism

Assay for ALP activity

Kinetic UV method using the reagent kits purchased from BioSystems, betalab, Barcelona (Spain)

Principle:

Alkaline phosphatase (ALP) catalyzes in alkaline medium the transfer of the phosphate group from \(\xi\)-nitrophenylphosphate to \(\tau\)-amino-\(\tau\)-methyl-\(\tau\)-propanol (AMP), liberating \(\xi\)-nitrophenol. The catalytic concentration is determined from the rate of \(\xi\)- nitrophenol formation, measured at \(\xi\)-\(\tilde\) nm.

²-nitrophenylphosphate + AMP

ALP

AMP – phosphate + \(\xi\)-nitropherol

Reagent:

 Reagent A
 Υ-Amino-Y-methyl-1-propanol

 N-hydroxyethylethylenediaminetriacetic acid

 Magnesium acetate, pH 1., ξ

 Reagent B

 ٤-Nitrophenylphosphate

Reagent preparation:

Transfer the contents of one Reagent B vial into a Reagent A bottle. Mix gently.

Wavelength:		۱. mm م ا
Cuvette:	light pa	ith: 1 cm . 7
Temperature		T./TV°C .T
Adjust the instrument		
Sample	γ·μl	
Working Solution	\ m1	

- o. Mix and insert the cuvette into the photometer.
- 7. Record initial absorbance and at \ minute intervals thereafter for \ \formunity minutes.

Y- Calculate the difference between consecutive absorbances, and the average absorbance difference per minute ($\Delta A/min$).

Calculation:

$ALP(U/l) = \Delta A X YY$

Normal range:

	٣٠°C	۳۷°C
Male	AV U/I	110 U/I
Female	۸ · U/I	1.0 U/I

Serum Alkaline Phosphatase

What the Blood Test Means

Tom Wade MD

